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1 Introduction

The integral formalizes the intuitive concept of area. It turns out that defining such an intuitive notion
is not an easy task. We will only be interested in defining the area of some special regions in the plane,
namely those which are bounded by the graph of a sufficiently nice function f , the x-axis and the vertical
lines x = a and x = b. This notion of area comes with the understanding that areas below the x-axis are
assigned a negative value. Let’s review the idea behind the integral.

Starting with a function f on [a, b], we partition the domain into finitely many small subintervals. On
each subinterval [xi−1, xi], we pick some point x∗i ∈ [xi−1, xi] and use the value f(x∗i ) as an approximation
for f on [xi−1, xi]. In other words, we build a row of thin rectangles to approximate the area between f
and the x-axis. The area of each rectangle is f(x∗i )(xi − xi−1), and so the total area of all rectangles is
given by

S =
n∑
i=1

f(x∗i )(xi − xi−1).

It is reasonable to expect that the accuracy of the approximation provided by S improves as the rectan-
gles get thinner. This suggests that we should take some sort of “limit” of these approximating sums as the
width of the subintervals tends to zero. If it exists, this “limit” is the definition of the area under f .

We first have to precisely define such a limit. We then have to decide for which functions such a limit
exists. Before embarking on these tasks, let’s see a concrete example.

Example 1. Suppose we want to give a meaning to the area of the region between the graph of the
function f(x) = ex, the x-axis, the y-axis and the line x = a. Let’s take the very simple subdivision of [0, a]
into n subintervals of equal length. Clearly, the endpoints of such subintervals are at 0, a/n, 2a/n, . . . , a.
For each of them we construct a rectangle having as base the interval [ka/n, (k+1)a/n] and whose height
is the value of the function at the left endpoint, namely eka/n. The sum of the areas of these rectangles is
given by

Rn =
n−1∑
k=0

a

n
eka/n.

This sum is quite messy and since in the end we would like to study the value of Rn for n → ∞, i.e.
when the intervals get thinner and thinner, we should figure out if it can be rewritten in a nice way. Notice
that we are essentially interested in evaluating a sum of the form 1+r+r2+ · · ·+ri−1+ri, usually called a
geometric sum. We would then substitute the value ea/n for r and n− 1 for i. The little trick is to multiply
1 + r+ r2 + · · ·+ ri−1 + ri by r− 1. Indeed, we obtain (1 + r+ r2 + · · ·+ ri−1 + ri)(r− 1) = ri+1 − 1 and
so, if r 6= 1, we have

1 + r + r2 + · · ·+ ri−1 + ri =
ri+1 − 1

r − 1
.

Coming back to our problem, we can then write

Rn =
n−1∑
k=0

a

n
eka/n =

a

n
· ea − 1

ea/n − 1
= (ea − 1) · 1

ea/n−1
a
n

.

Let’s now try to answer our initial question: What happens to Rn for n → ∞? Notice that for n → ∞,
we have that a/n→ 0. Therefore, what we really care about is

lim
x→0

ex − 1

x
.



By a simple application of L’Hospital’s rule, the value of this limit is 1 and so

lim
n→∞

Rn = lim
n→∞

(ea − 1) · 1
ea/n−1

a
n

= ea − 1.

Recall that this means that for every ε > 0, there exists a number Nε such that for all n > Nε, we have

|Rn − (ea − 1)| < ε.

In words, the values of Rn can be made arbitrarily close to ea − 1 by choosing n sufficiently large.
Let’s now consider rectangles having again as bases the subintervals [ka/n, (k+1)a/n] but whose heights

are the values of the function at the right endpoints, namely e(k+1)a/n. In this case, the sum of the areas
of the rectangles is given by

R′n =
n−1∑
k=0

a

n
e(k+1)a/n =

n−1∑
k=0

a

n
eka/n · ea/n = ea/n

n−1∑
k=0

a

n
eka/n = ea/n ·Rn.

As n→∞, we have that R′n tends to ea − 1 as well.
Coincidence? Is this true for all other possible partitions and choices of the sample points? It will turn

out that the answers to these questions are no and yes, respectively.

Let us formalize the reasonings above in the following very long definition:

Definition 1. If I = [a, b] is a closed bounded interval of real numbers, then a partition of I is a n+1-tuple
P = (x0, x1, . . . , xn) of points in I such that a = x0 < x1 < · · · < xn = b.

The xi’s divide the interval I into n subintervals I1 = [x0, x1], . . . , In = [xn−1, xn]. The norm of P is
the number

‖P‖ = max{x1 − x0, x2 − x1, . . . , xn − xn−1},

i.e. the length of the largest subinterval into which the partition divides [a, b].
An arbitrary point x∗i in the subinterval Ii = [xi−1, xi] is called a tag (or sample point) of Ii. A partition

P of I together with a set of tags {x∗1, . . . , x∗n} such that x∗i belongs to Ii, for each i = 1, . . . , n, is called a
tagged partition of I and denoted by Ṗ. Note that a tag could be any point in the subinterval and so an
endpoint of a subinterval could be used as a tag for two consecutive subintervals. The norm of the tagged
partition Ṗ is defined as the norm of P, i.e. it does not depend on the choice of tags.

The Riemann sum of a function f : [a, b]→ R1 corresponding to the tagged partition Ṗ is the number

S(f, Ṗ) =
n∑
i=1

f(x∗i )(xi − xi−1).

As in our process of defining the area under the graph of a function we are working with limits, we
should expect that not all quantities involved exist. Loosely speaking, we say that a function f is Riemann
integrable if the Riemann sum can be made as close as desired to a given quantity, called the integral of f
or the area under the graph of f , by making the subintervals small enough. This is formalized as follows:

Definition 2. A function f : [a, b] → R is Riemann integrable on [a, b] if there exists a number L ∈ R
such that for every ε > 0 there exists δε > 0 such that if Ṗ is any tagged partition of [a, b] with ‖Ṗ‖ < δε,
then

|S(f, Ṗ)− L| < ε. (1)

The value L is called the Riemann integral of f over [a, b]. Instead of L, we will usually write∫ b

a

f(x) dx or
∫ b

a

f.

1In words, a function defined on [a, b] and having real values.
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What did we verify in Example 1? Well, we showed that for every ε > 0, there exists a number a/Nε such
that for every tagged partition with subintervals of the same length, all tags in the left or right endpoints
and norm smaller than a/Nε, we have that the corresponding Riemann sum Rn satisfies

|Rn − (ea − 1)| < ε.

So we proved less than what we really need in order to show that the area of the region between the graph
of f(x) = ex, the x-axis, the y-axis and the line x = a is ea − 1, or equivalently that∫ a

0

ex = ea − 1.

Remark 3. You might imagine that there is a game going on in Definition 2, played by an Engineer and
a Hater. The Engineer is attending all Calculus 2 classes and he/she is sure that

∫ b
a
f = L. The Hater of

course wants to challenge the Engineer and so they decide to play the following game:

• The Hater chooses an ε > 0.

• The Enginneer wisely looks at ε and chooses a δε > 0.

• The Hater chooses a tagged partition Ṗ of [a, b] with norm less than δε.

If |S(f, Ṗ) − L| < ε, the Engineer wins and the Hater looses, otherwise the Hater wins and the Engineer
looses. Definition 2 tells us that if the Engineer plays cleverly, then he/she always wins. In other words,
the Engineer has a winning strategy and the strategy consists in just picking an appropriate value of δε for
which (1) holds.

Remark 4. It is crucial for the success of a theory of integration that we require that every tagged partition
of norm smaller than δε satisfies (1). We would not get a satisfactory theory by only requiring that for
every ε > 0 there exists a δε > 0 and some tagged partition with norm less than δε satisfying (1).

In principle, there might exist more than one L satisfying (1). It can be verified that, if it exists, the
integral is unique:

Lemma 2. If f : [a, b] → R is Riemann integrable on [a, b], then the value of the integral is uniquely deter-
mined.

Using the definition of Riemann integrability it is not difficult to show that the following properties hold.
Note that all of them are clearly satisfied by our intuitive notion of area.

Theorem 3. Let f : [a, b]→ R and g : [a, b]→ R be two Riemann integrable functions on [a, b]. The following
hold:

1. If k ∈ R, the function kf is Riemann integrable on [a, b] and∫ b

a

kf = k

∫ b

a

f.

2. The function f + g is Riemann integrable on [a, b] and∫ b

a

(f + g) =

∫ b

a

f +

∫ b

a

g.

3. If f(x) ≤ g(x) for each x ∈ [a, b], then ∫ b

a

f ≤
∫ b

a

g.

3



Example 4. The constant function f(x) = c is Riemann integrable on [a, b] and
∫ b
a
f(x) dx = c(b − a).

Indeed, for any tagged partition Ṗ of [a, b], we have

S(f, Ṗ) =
n∑
i=1

f(x∗i )(xi − xi−1) =
n∑
i=1

c(xi − xi−1) = c(b− a).

Therefore, by taking L = c(b− a), we have that (1) translates into 0 < ε, which is true by assumption.

We have just seen that constant functions are Riemann integrable. If you feel particularly bold you
might ask: Are all functions Riemann integrable?

Example 5. The following function f : [0, 1]→ R (called Dirichlet’s function) is not Riemann integrable:

f(x) =

®
1 if x ∈ [0, 1] is a rational number;

0 if x ∈ [0, 1] is an irrational number, i.e. a number which is not a rational number.

The idea is to suppose that f is Riemann integrable and see how this leads to a nonsense. This would
then imply that f cannot be Riemann integrable.

Therefore, from now on we suppose that f is Riemann integrable and let L be the Riemann integral of
f over [0, 1]. Observe first that if Ṗ is any tagged partition of [0, 1] all of whose tags are rational numbers,
then

S(f, Ṗ) =
n∑
i=1

1 · (xi − xi−1) = 1.

On the other hand, if Q̇ is any tagged partition all of whose tags are irrational numbers, then S(f, Q̇) = 0.
We now need some hand-waving: it is known that every interval of real numbers contains both rational
and irrational numbers. This implies that we can find tagged partitions Ṗ and Q̇ as above and with norms
smaller than δ, for each δ > 0.

Since f is Riemann integrable, it satisfies the conditions in Definition 2 for every ε > 0 and so in
particular for ε = 1/2. This means that there exists δ1/2 > 0 such that if Ṗ is any tagged partition of [0, 1]
as above with ‖Ṗ‖ < δ1/2 and Q̇ is any tagged partition of [0, 1] as above with ‖Q̇‖ < δ1/2, then

|1− L| = |S(f, Ṗ)− L| < 1

2
and |0− L| = |S(f, Q̇)− L| < 1

2
. (2)

Summing up the two inequalities in (2), we have that

|1− L|+ |L| < 1

2
+

1

2
= 1.

Moreover, the triangle inequality tells us that |x+ y| ≤ |x|+ |y|, for each real numbers x and y. Therefore,
using this with x = 1− L and y = L, we obtain

1 = |(1− L) + L| ≤ |1− L|+ |L| < 1,

which is clearly a nonsense. This means that our assumption “f is Riemann integrable” was wrong and so
f is not Riemann integrable.

We have somehow convinced ourselves that working with the definition of Riemann integrability is not
easy, the main reason being that we have to “guess” the “limit” L. There are then several difficulties in
working with tagged partitions. Indeed, for each partition, there are infinitely many choices of tags and
there are infinitely many partitions having a norm less than a specified amount. Luckily, it is possible to
establish powerful tools for proving integrability. For example, it can be showed that a given function is
Riemann integrable if and only if it can be “squeezed” between two Riemann integrable functions with
sufficient accuracy. We will not precisely formulate this criterion and we just remark that it can be used to
prove the following important results:

Theorem 6. If f : [a, b]→ R is a monotone function on [a, b], then it is Riemann integrable on [a, b].
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Theorem 7. If f : [a, b]→ R is a continuous function on [a, b], then it is Riemann integrable on [a, b].

Theorem 8 (Additivity Theorem). If f : [a, b]→ R is a Riemann integrable function on [a, b] and c ∈ (a, b),
then its restrictions to [a, c] and [c, b] are both Riemann integrable and∫ b

a

f =

∫ c

a

f +

∫ b

c

f.

Corollary 9. If f : [a, b]→ R is a Riemann integrable function on [a, b] and [c, d] ⊆ [a, b], then the restriction
of f to [c, d] is Riemann integrable on [c, d].

Until now, we have considered the Riemann integral over an interval [a, b] where a < b. It is in fact
convenient to have the integral defined more generally:

Definition 5. If f : [a, b] → R is a Riemann integrable function on [a, b] and α, β ∈ [a, b] with α < β, we
let ∫ α

β

f = −
∫ β

α

f and
∫ α

α

f = 0.

2 Fundamental Theorem of Calculus

The derivative and the integral have been independently defined. The notion of derivative was motivated
by the problem of finding tangent lines and it is defined in terms of limits of difference quotients. The
notion of integral was motivated by the problem of measuring areas under graphs of functions and it is
defined in terms of “limits” of finite sums (Riemann sums). The Fundamental Theorem of Calculus reveals
the inverse relationship between these two notions.

Given a continuous function f : [a, b] → R, Theorem 7 and Corollary 9 guarantee us that f is Riemann
integrable on [a, x] for each x ∈ [a, b]. Therefore, we can define a new function F : [a, b]→ R by

F (x) =

∫ x

a

f(t) dt.

Theorem 10 (Fundamental Theorem of Calculus, Part 1). If f : [a, b] → R is a continuous function and
F : [a, b]→ R is defined by F (x) =

∫ x
a
f(t) dt, then F is differentiable and F ′(x) = f(x) for each x ∈ [a, b].

Theorem 10 implies that in order to find F we have to look among the functions whose derivative is f .

Definition 6. An antiderivative of a function f : [a, b]→ R is a function G : [a, b]→ R such that G′(x) =
f(x) for each x ∈ [a, b].

It is sometimes easy to guess an antiderivative of a function f . If we are able to do so, then we are able
to determine the integral of f :

Theorem 11 (Fundamental Theorem of Calculus, Part 2). If f : [a, b] → R is a continuous function and
G : [a, b]→ R an antiderivative of f , then∫ b

a

f(x) dx = G(b)−G(a).

Proof. By Theorem 10, the function F given by F (x) =
∫ x
a
f(t) dt is an antiderivative of f . Since G is

another antiderivative of f , we have that G′(x) = f(x) = F ′(x) for each x ∈ [a, b] and so

(F −G)′(x) = F ′(x)−G′(x) = 0

for each x ∈ [a, b]. This implies that F − G is a constant function on [a, b], i.e. there exists a constant
C ∈ R such that F (x)−G(x) = C for each x ∈ [a, b]. Therefore, since F (a) =

∫ a
a
f(t) dt = 0, we have that

C = F (a)−G(a) = −G(a). But then∫ b

a

f(x) dx = F (b) = G(b) + C = G(b)−G(a),

as desired.
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Example 12. An antiderivative of f(x) = ex is G(x) = ex. Therefore,∫ a

0

ex dx = G(a)−G(0) = ea − 1.

Example 13. An antiderivative of f(x) = mx is G(x) = mx2/2. Therefore,∫ b

a

mx dx = G(b)−G(a) = m
b2 − a2

2
.

Geometrically, this is the area of a trapezoid with height b− a and bases ma and mb.

Example 14. Compute I =
∫ π
0
sinx dx. Since an antiderivative of f(x) = sinx is G(x) = − cosx, we

have that I = (− cosπ)− (− cos 0) = 2.

Example 15. Compute I =
∫ 1

0
1

1+x2 dx. Since an antiderivative of f(x) = 1
1+x2 is G(x) = arctanx, we

have that I = arctan 1− arctan 0 = π/4.

Example 16. Compute I =
∫ π
0
sinx+ 3x4 dx. By Theorem 3, we have that

I =

∫ π

0

sinx dx+

∫ π

0

3x4 dx = 2 + 3π5/5.

Example 17. Compute I =
∫ 3π

0
| sinx| dx. By the Additivity Theorem and the fact that f(x) = sinx is

positive on [0, π] and [2π, 3π] and negative on [π, 2π], we have

I =

∫ π

0

sinx dx+

∫ 2π

π

− sinx dx+

∫ 3π

2π

sinx dx = 2 + 2 + 2 = 6.

2.1 Areas Between Curves

In this section, we are interested in determining the area beteween two curves y = f(x) and y = g(x) on
the interval [a, b]. If f and g are both non-negative on [a, b] and g lies below f on that same interval (i.e.,
g(x) ≤ f(x) for each x ∈ [a, b]), then we naturally assign the value∫ b

a

f(x) dx−
∫ b

a

g(x) dx =

∫ b

a

f(x)− g(x) dx

to this area. Note that this is true even if f and g are sometimes negative. Indeed, we can always find a
real number K such that f +K and g +K are both non-negative on [a, b]. But then the region between
y = f(x) and y = g(x) has the same area as the region between y = f(x) +K and y = g(x) +K, and this
common value is given by∫ b

a

f(x) +K dx−
∫ b

a

g(x) +K dx =

∫ b

a

f(x) dx−
∫ b

a

g(x) dx =

∫ b

a

f(x)− g(x) dx.

The following criterion is useful in order to establish that a given curve y = f(x) lies below a curve
y = g(x) on a given interval:

Lemma 18 (Comparison Criterion). Let f : [a, b]→ R and g : [a, b]→ R be two differentiable functions on
[a, b]. If f(a) ≤ g(a) and f ′(x) ≤ g′(x) for each x ∈ [a, b], then f(x) ≤ g(x) for each x ∈ [a, b].

In words, the Comparison Criterion tells us that if the value of f is at most the value of g at the left
endpoint a and the function g increases faster than f , then f is smaller than g throughout the interval
[a, b].

Exercise 19. Show why Lemma 18 is true.
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Example 20. Find the area between the curves y = x and y = sinx for 0 ≤ x ≤ π/4.
We first observe that sinx ≤ x for each x ∈ [0, π/4]. This follows from the Comparison Criterion and

the fact that 0 ≤ 0 and cosx ≤ 1 for each x ∈ [0, π/4]. Therefore, the desired area is the difference of the
areas under the bigger curve and the smaller curve, i.e.∫ π/4

0

x− sinx dx =

∫ π/4

0

x dx−
∫ π/4

0

sinx dx = π2/32 +
√
2/2− 1.

Example 21. Find the area between the curves y = x2 and y = x3 for 0 ≤ x ≤ 1.
Note that if 0 ≤ x ≤ 1, then 0 ≤ x3 ≤ x2 and so y = x3 lies below y = x2. This means that the desired

area is ∫ 1

0

x2 dx−
∫ 1

0

x3 dx =
1

3
− 1

4
.

Example 22. Find the area between the curves y = ex and y = x for 0 ≤ x ≤ 1.
Note that 0 ≤ e0 and 1 ≤ ex for each x ∈ [0, 1]. Therefore, the Comparison Criterion tells us that the

curve y = x lies below y = ex on [0, 1] and so the desired area is∫ 1

0

ex dx−
∫ 1

0

x dx = e− 1− 1

2
.

Example 23. Find the area between the curves y = x3 − x and y = x2.
Let us determine the points of intersection of the two curves. We need to solve x3 − x = x2 or, equiva-

lently, x3 − x2 − x = 0. This gives the solutions x = 0, x = (1 +
√
5)/2 and x = (1−

√
5)/2.

It is easy to see that the curve y = x2 lies below y = x3 − x on [(1−
√
5)/2, 0], whereas y = x3 − x lies

below y = x2 on [0, (1 +
√
5)/2]. Therefore, the desired area is∫ 0

(1−
√
5)/2

x3 − x− x2 dx+

∫ (1+
√
5)/2

0

x2 − (x3 − x) dx.

Example 24. Find the area between the curves y = sinx and y = cosx for 0 ≤ x ≤ π/2.
Do the two curves intersect in [0, π/2]? It is easily seen that x = π/4 is a solution of sinx = cosx. On

the other hand, the Comparison Criterion tells us that y = sinx lies below y = cosx on [0, π/4] and that
y = cosx lies below y = sinx on [π/4, π/2]. Therefore, the desired area is given by∫ π/4

0

cosx− sinx dx+

∫ π/2

π/4

sinx− cosx dx = 2
√
2− 2.

Example 25. Find the area of the region enclosed by the graphs of y = 8− x2, y = 7x and y = 2x in the
first quadrant. Answer: 31/6.

Example 26. Find the area between the curves y = x− 1 and y2 = 2x+ 6. Answer: 18.

3 Techniques of Integration

In this section we introduce some techniques allowing to compute antiderivatives in a sort of mechanical
way. Thanks to Theorem 11, this will allow us to compute integrals as well. For these purposes, it is useful
to first introduce the following notion:

Definition 7. Given a continuous function f : [a, b]→ R, the indefinite integral of f , denoted by
∫
f(x) dx

or simply
∫
f , is the set of all antiderivatives of f .

Fo example,
∫
cosx denotes the set of all functions f such that there exists a real number c such that

f(x) = sinx + c for each x. Indeed, we have seen in the proof of Theorem 11 that the antiderivatives of
a given function all differ by a constant. It is therefore evocative to adopt the following slight abuse of
notation: if F (x) is an antiderivative of f(x), we denote the indefinite integral

∫
f(x) dx by F (x) + C.
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Example 27. Let f and g be two functions. If F is an antiderivative of f and G is an antiderivative of g,
then F +G is an antiderivative of f + g, as (F +G)′ = F ′ +G′ = f + g. Therefore, we have the evocative
formula ∫

f + g =

∫
f +

∫
g.

This equality should be interpreted as meaning that an antiderivative of f + g can be obtained by adding
an antiderivative of f to an antiderivative of g.

Exercise 28. Let k ∈ R and f be a function. Show that∫
k · f = k

∫
f.

3.1 Integration by Parts

The first technique comes from transposing the product formula for the derivative to the integral setting:

Theorem 29 (Integration by parts). Let f and g be two differentiable functions such that f ′ and g′ are
continuous. Then ∫

fg′ = fg −
∫
f ′g

and ∫ b

a

f(x)g′(x) dx = f(x)g(x)

∣∣∣∣b
a

−
∫ b

a

f ′(x)g(x) dx.

Proof. By the formula for the derivative of a product of two functions, we have (fg)′ = f ′g + fg′ or,
equivalently, fg′ = (fg)′ − f ′g. But then Example 27 and Exercise 28 imply that∫

fg′ =

∫
((fg)′ − f ′g) =

∫
(fg)′ −

∫
f ′g,

and since fg can be chosen as one of the functions denoted by
∫
(fg)′, we obtain the desired equality.

The second equality follows from Theorem 11 and it is left as an exercise.

Integration by parts transfers the difficulty of computing
∫
fg′ to that of computing

∫
f ′g. By properly

choosing f and g, the last integral may be easier than the original one.

Integration by parts is useful when the function to be integrated is a product of a function f , whose
derivative is simpler than f , and a function of the form g′.

Example 30. Compute
∫
xex.∫

xy
f

· exy
g′

= xy
f

· exy
g

−
∫

1y
f ′

· exy
g

= xex − ex + c.

Example 31. Compute
∫
x sinx.∫

xy
f

· sinxy
g′

= xy
f

· (− cosx)y
g

−
∫

1y
f ′

· (− cosx)y
g

= −x cosx+ sinx+ c.

Example 32. Compute
∫
x3 lnx.

∫
x3 lnx =

∫
x3y
g′

· lnxy
f

= (x4/4)y
g

· lnxy
f

−
∫

(x4/4)y
g

· (1/x)y
f ′

=
x4

4
lnx− 1

4

∫
x3 =

x4

4
lnx− x4

16
+ c.
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Example 33. Compute
∫
(1 + 2x2)ex

2

.∫
(1 + 2x2)ex

2

=

∫
ex

2

+

∫
2x2ex

2

and
∫

2x2ex
2

=

∫
xy
f

· 2xex
2y

g′

= xy
f

· ex
2y
g

−
∫

1y
f ′

· ex
2y
g

.

Therefore, ∫
(1 + 2x2)ex

2

= xex
2

+ c.

One useful trick is to consider the function g′ to be the factor 1.

Example 34. Compute
∫
lnx.∫
lnx =

∫
1y
g′

· lnxy
f

= xy
g

· lnxy
f

−
∫
xy
g

· (1/x)y
f ′

= x lnx− x+ c.

Example 35. Compute
∫
ln2 x.

∫
ln2 x =

∫
1y
g′

· ln2 xy
f

= xy
g

· ln2 xy
f

−
∫
xy
g

· (1/x)2 lnxy
f ′

= x ln2 x− 2

∫
lnx = x ln2 x− 2(x lnx− x) + c.

Example 36. Compute
∫
arctanx.∫

arctan =

∫
1y
g′

· arctanxy
f

= xy
g

· arctanxy
f

−
∫
xy
g

· (1/1 + x2)y
f ′

= x arctanx− 1

2
ln(1 + x2) + c.

Another trick is to use integration by parts to find
∫
h in terms of

∫
h again, and then solve for

∫
h.

Example 37. Compute
∫
(1/x) lnx.∫

(1/x)y
g′

· lnxy
f

= lnxy
f

· lnxy
g

−
∫

(1/x)y
f ′

· lnxy
g

,

which implies that 2
∫
(1/x) · lnx = ln2 x and so∫

(1/x) · lnx =
1

2
ln2 x+ c.

Example 38. Compute
∫
ex sinx.∫

exy
f

· sinxy
g′

= exy
f

· (− cosx)y
g

−
∫
exy
f ′

· (− cosx)y
g

= −ex cosx+

∫
ex cosx.

Now we use integration by parts again on
∫
ex cosx and obtain∫

exy
f

· cosxy
g′

= exy
f

· sinxy
g

−
∫
exy
f ′

· sinxy
g

.
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Therefore, ∫
ex sinx = −ex cosx+ ex sinx−

∫
ex sinx

and finally ∫
ex sinx =

ex(sinx− cosx)

2
+ c.

Example 39. Compute
∫
sin2 x.∫

sin2 x =

∫
sinxy
f

· sinxy
g′

= sinxy
f

· (− cosx)y
g

−
∫

cosxy
f ′

· (− cosx)y
g

= − sinx cosx+

∫
cos2 x.

Since sin2 x+ cos2 x = 1, we have∫
sin2 x = − sinx cosx+

∫
(1− sin2 x) = − sinx cosx+ x−

∫
sin2 x

and so ∫
sin2 x =

x− sinx cosx

2
+ c.

Arguably the fastest way of computing
∫
sin2 x is by recalling that

cos 2x = cos2 x− sin2 x = 1− 2 sin2 x and sin 2x = 2 sinx cosx.

Indeed,∫
sin2 x =

1

2

∫
(1− cos 2x) =

1

2
x− 1

4

∫
2 cos 2x =

1

2
x− 1

4
sin 2x =

x− sinx cosx

2
+ c.

Let’s see yet another way of computing
∫
sin2 x, this time by a lengthy repeated application of integration

by parts: ∫
sin2 x =

∫
1y
g′

· sin2 xy
f

= xy
g

· sin2 xy
f

−
∫

2 sinx cosxy
f ′

· xy
g

= x sin2 x−
∫
x sin 2x.

We now need to compute
∫
x sin 2x:∫

x sin 2x =
1

2

∫
2·x sin 2x =

1

2

∫
xy
f

·2 sin 2xy
g′

=
1

2

Å
xy
f

·(− cos 2x)y
g

−
∫

1y
f ′

·(− cos 2x)y
g

ã
= −1

2
x cos 2x+

1

4
sin 2x+c.

Combining everything, we obtain∫
sin2 x = x sin2 x−

∫
x sin 2x = x sin2 x+

1

2
x cos 2x− 1

4
sin 2x+ c

and using the trigonometric formulas above it is easy to see that this expression simplifies to x−sin x cos x
2 +c.

3.2 Substitution Rule

The second technique comes from transposing the Chain Rule (the rule for computing the derivative of a
composition of two functions) to the integral setting:
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Theorem 40 (Substitution Rule). Let f be a continuous function and g be a differentiable function such
that g′ is continuous. If F is an antiderivative of f , then∫

f(g(x)) · g′(x) dx = F (g(x)) + c.

Moreover, ∫ b

a

f(g(x)) · g′(x) dx =

∫ g(b)

g(a)

f(u) du.

Proof. By the Chain Rule, we have that the derivative of F (g(x)) is F ′(g(x)) · g′(x) = f(g(x)) · g′(x) and
so F (g(x)) is an antiderivative of f(g(x)) · g′(x) and we have∫

f(g(x)) · g′(x) dx = F (g(x)) + c.

Let us now prove the formula about definite integrals. Since F (g(x)) is an antiderivative of f(g(x))·g′(x),
Theorem 11 implies that ∫ b

a

f(g(x)) · g′(x) dx = F (g(b))− F (g(a)).

Moreover, since F is an antiderivative of f , again by Theorem 11, we have that∫ g(b)

g(a)

f(u) du = F (g(b))− F (g(a))

and so the desired equality holds.

The simplest use of the Substitution Rule is by recognizing that a given function is of the form f(g(x)) ·
g′(x).

Example 41. Compute
∫ b
a
sin5 x cosx dx.

Since sin5 x cosx can be written as f(g(x)) · g′(x) by taking g(x) = sinx and f(x) = x5, we have∫ b

a

sin5 x cosx dx =

∫ b

a

f(g(x)) · g′(x) dx =

∫ g(b)

g(a)

f(u) du =

∫ sin b

sin a

u5 du =
sin6 b

6
− sin6 a

6
.

Example 42. Compute
∫ b
a
tanx dx.

Since tanx = sin x
cos x , we have that − tanx = − sin x

cos x can be written as f(g(x)) ·g′(x) by taking g(x) = cosx
and f(x) = 1/x. Therefore,∫ b

a

− tanx dx =

∫ b

a

f(g(x)) · g′(x) dx =

∫ g(b)

g(a)

f(u) du =

∫ cos b

cos a

1

u
du = ln(cos b)− ln(cos a)

and so
∫ b
a
tanx dx = ln(cos a)− ln(cos b).

Note that the use of the Substitution Rule∫ b

a

f(g(x)) · g′(x) dx =

∫ g(b)

g(a)

f(u) du

can be shortened by adopting the following simple mechanical process: To go from the left side to the
right side, we substitute u for g(x) and du for g′(x) dx and change the interval of integration. This can be
further abbreviated by simply saying: Let u = g(x) and du = g′(x) dx.

Remark 8. We have attributed no meanings to the symbols du and dx by themselves. They are used as
formal devices to help us perform this operation in a mechanical way.
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For example, in
∫ b
a
sin5 x cosx dx, we let u = sinx and du = cosx dx and obtain∫ b

a

sin5 x cosx dx =

∫ sin b

sin a

u5 du =
sin6 b

6
− sin6 a

6
.

Similarly, in
∫ b
a
tanx dx, we let u = cosx and du = − sinx dx and obtain∫ b

a

tanx dx =

∫ b

a

sinx

cosx
dx = −

∫ cos b

cos a

1

u
du = ln(cos a)− ln(cos b).

In the case of indefinite integrals the process is similar and can be summarized as follows:

1. Let u = g(x) and du = g′(x) dx. After this manipulation only the letter u should appear in
the new integrand.

2. Find an antiderivative (as an expression involving u).

3. Substitute g(x) back for u.

For example, in order to find
∫
sin5 x cosx dx we proceed as follows:

1. Let u = sinx and du = cosx dx. We obtain
∫
u5 du.

2. Find an antiderivative:
∫
u5 du = u6

6 + c.

3. Substitute g(x) back for u:
∫
sin5 x cosx dx = sin6 x

6 + c.

Example 43. Compute
∫

x√
1−4x2

dx.

Note that −8x√
1−4x2

can be written as f(g(x)) ·g′(x) by taking g(x) = 1−4x2 and f(u) = u−1/2. Therefore,
we proceed as follows:

1. Let u = 1− 4x2 and du = −8x dx. The new integral becomes − 1
8

∫
u−1/2 du.

2. Find an antiderivative: − 1
8

∫
u−1/2 du = − 1

8 · 2 · u
1/2 + c.

3. Substitute g(x) back for u:
∫

x√
1−4x2

dx = − 1
4

√
1− 4x2 + c.

Example 44. Compute
∫
(x6 + x3) 3

√
x3 + 2 dx.

The trick is to bring a factor of x inside the cube root:∫
(x6 + x3)

3
√
x3 + 2 dx =

∫
(x5 + x2)

3
√
x6 + 2x3 dx.

Now we let u = x6 + 2x3 and du = 6x5 + 6x2 dx. Therefore, we are left with computing

1

6

∫
u1/3 du =

1

6
· 3
4
· u4/3 + c =

1

8
· u4/3 + c.

Substituting g(x) back, we obtain∫
(x6 + x3)

3
√
x3 + 2 dx =

1

8
· (x6 + 2x3)4/3 + c.

Success in using the Substitution Rule depends on the ability of determining which part of the integrand
should be replaced by the symbol u. In fact, the most interesting uses of the Substitution Rule occur when
the factor g′(x) does not appear. There are essentially two scenarios that could arise:

Replace a complicated expression by a simpler one.
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Example 45. Compute
∫

1+ex

1−ex dx.
It seems natural to let u = ex and du = ex dx. Note that∫

1 + ex

1− ex
dx =

∫
1 + ex

1− ex
· 1
ex
· ex dx

and so we are left with computing∫
1 + u

1− u
· 1
u
du =

∫
2

1− u
+

1

u
du = 2

∫
1

1− u
du+

∫
1

u
du = −2 ln(1− u) + lnu.

The trick used in the first equality above allows to find antiderivatives of rational functions. We will treat
this topic more systematically in the following sections. Finally, substituting g(x) back, we obtain∫

1 + ex

1− ex
dx = −2 ln(1− ex)− ln ex = −2 ln(1− ex)− x.

Let us see an alternative way of computing the indefinite integral above. Instead of expressing u in
terms of x and du in terms of dx, we express x in terms of u and dx in terms of du. In this case, we let
again u = ex and obtain

x = lnu and dx =
1

u
du.

Note that
∫

1+ex

1−ex dx immediately becomes
∫

1+u
1−u ·

1
u du. More generally, if g is a bijective function, then

we can apply the substitution
x = g(t) and dx = g′(t)dt.

Example 46. Compute
∫

e2x√
ex+1

dx.

We let u =
√
ex + 1. Therefore, u2 = ex + 1 and so

x = ln(u2 − 1) and dx =
2u

u2 − 1
du.

The integral becomes ∫
(u2 − 1)2

u
· 2u

u2 − 1
du = 2

∫
u2 − 1 du = 2

u3

3
− 2u+ c.

Substituting g(x) back, we obtain∫
e2x√
ex + 1

dx =
2

3
(ex + 1)3/2 − 2(ex + 1)1/2 + c.

Example 47. Compute
∫
x
√
1− x dx.

We let u = 1− x and du = −1 dx. The integral becomes∫
−(1− u)

√
u du =

∫
−
√
u du+

∫
u
√
u du = −2

3
u3/2 +

2

5
u5/2 + c.

Substituting g(x) back, we obtain∫
x
√
1− x dx dx = −2

3
(1− x)3/2 + 2

5
(1− x)5/2 + c.

Use a trigonometric substitution.
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Example 48. Compute
∫ √

1− x2 dx.
We let x = sinu and dx = cosu du. Clearly, u = arcsinx. The integral becomes∫ √

1− sin2 u cosu du =

∫
cos2 u du.

Recalling that cos 2u = cos2 u− sin2 u = 2 cos2 u− 1, we have cos2 u = cos 2u+1
2 and so∫

cos2 u du =

∫
cos 2u+ 1

2
=
u

2
+

sin 2u

4
+ c.

Substituting back, we have ∫ √
1− x2 dx =

arcsinx

2
+

sin(2 arcsinx)

4
+ c.

We will see more examples of trigonometric substitutions in the next sections.

3.3 Trigonometric Integrals

Read section 7.2 of the book.
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